Ai connect pro_03_Email Analysis_ChatGPT Flow Created at 1/28/2025 8:32 AM Ai connect pro_03_Email Analysis_ChatGPT 232 No 43 E:/BlueWest/98-Utilitaires/Grille Switch.png E:/BlueWest/bitBucketFolder/ai-connect-pro/Images/Ai-connect-+-gpt.png C:/Users/tdesc/Pictures/gpt.png No No 00:00 00:00 No Monday Sunday No 1 Start of the month 279
Folder folder - #automanaged# No Default No 00:00 00:00 No Monday Sunday No 1 Start of the month #808080 No No Yes Yes Overwrite 1 No No Folders No 560 304 ProblemFilesFolder producer Filter One Problem jobs This flow only Default 10 10 80 224 Folder folder - #automanaged# No Default No 00:00 00:00 No Monday Sunday No 1 Start of the month #808080 No No Yes Yes Overwrite 1 No No Folders No 176 304 SubmitPoint producer Filter Unlimited EML #automanaged# Default <p>This flow shows how Enfocus Switch can use AI to automatically process incoming emails related to print production.</p> <ul> <li><strong>Email content and attachments</strong> are analyzed using a custom prompt</li> <li>Information is extracted and structured into a <strong>clean XML format</strong></li> </ul> <div class="highlight"> The XML is used to classify the email and route it to the correct department or workflow automatically. </div> <ul> <li>Job and order details (file name, OS, delivery errors, software used)</li> <li>Email metadata (sender, subject, date, priority, attachments)</li> <li>Category of request (e.g., invoice, quotation, delivery issue)</li> <li>Suggested summary and response for customer service</li> </ul> <h2>How It Works</h2> <p> When an email arrives (e.g., to <strong>contact@myprintshop.com</strong>), the system parses it and feeds it to an AI prompt. The output is a structured XML file that Switch uses to route the request efficiently. </p> <h2>Prompt Logic</h2> <p> The prompt is crafted to: </p> <ul> <li>Classify the type of request from the email content</li> <li>Extract structured metadata and order info</li> <li>Infer missing values when possible</li> <li>Generate a helpful summary and a draft reply</li> </ul> <p><strong>This flow eliminates manual sorting and accelerates job handling in customer-facing print operations.</strong></p> E:/BlueWest/bitBucketFolder/ai-connect-pro/Images/AI Connect_200px.png No No No No Job only Files only <ValueDescription Type="stringlist"> <Value>eml</Value> </ValueDescription> Submit Yes No 80 304 SwitchClient Filter 90 119 93 Gray No All Files No Files Folder folder GPT response #automanaged# No Default No 00:00 00:00 No Monday Sunday No 1 Start of the month #808080 No No Yes Yes Overwrite 1 No No Folders No 560 224 Folder folder - #automanaged# No Default No 00:00 00:00 No Monday Sunday No 1 Start of the month #808080 No No Yes Yes Overwrite 1 No No Folders No 368 304 Filter 0 2 179 Gray No All Files No Files createLog processor TrafficLight Create log 656 304 Default Default Yes Unlimited XML [Metadata.Text:Dataset="AIconnect",Model="JSON",Path="/0/message/content",Space="trim"] #### %%%% utf8 Folder folder Data #automanaged# No Default No 00:00 00:00 No Monday Sunday No 1 Start of the month #808080 No No Yes Yes Overwrite 1 No No Folders No 752 304 TrafficLight 0 179 180 Gray Data with log Log No Yes Yes Yes Filter 0 93 218 Gray No All Files No Files Folder folder XML #automanaged# No Default No 00:00 00:00 No Monday Sunday No 1 Start of the month #808080 No No Yes Yes Overwrite 1 No No Folders No 752 224 TrafficLight -90 179 212 Gray Log Log No Yes Yes Yes EMLPickup processor Move EMLPickup 272 304 Default Default Yes Unlimited EML Metadata is asset utf8 Yes Attachments Move 0 218 163 Gray No Folder folder Set your API key #automanaged# No Default No 00:00 00:00 No Monday Sunday No 1 Start of the month Magenta No No Yes Yes Overwrite 1 No No Folders No 464 384 ai-connect-pro processor TrafficLight AI connect_PRO 464 304 Default Default Yes Unlimited OpenAI Text completion dall-e-2 Vivid Standard 256x256 1024x1024 a photo of a happy corgi puppy sitting and facing forward, studio light, longshot 1 gpt-4o You are an automated agent for a print production company. Analyze the email content and metadata below and generate a single-line XML Instructions: Classify the email into one category: - Invoice - Bill - Quotation demand - Quality claim - File for order - Delay question - Delivery question If none fit, use <Category name='Other'>*Proposed*</Category> Extract or infer: - Sender, recipient, subject - Priority: Low | Normal | High (default: Normal) - Attachments: list all, even if empty; add purpose as metadata If order info is present: - Order number/reference - Job type/file name - Quantity, material, size, delivery date, instructions - Billing details if applicable Output must: - Output strict XML only, no plain text or line breaks, or markdown wrapper - Match this exact structure (use single quotes, escape XML special characters, no extra fields): <XML><Metadata><Priority>*</Priority><Attachments><Attachment><FileName>*</FileName><FileType>*</FileType></Attachment></Attachments></Metadata><Order>*Order details, one XML tag by info*</Order><Category name='*'></Category><Summary>*Summary*</Summary><Response>*Suggested reply*</Response></XML> 0.5 1.0 alloy mp3 Current en 0 json http://localhost:7869/ Text completion Tell gemma:2b 0 Text completion You are an expert assistant from MyPrintingCompany.com a printing company, helping with customer communication. You will receive two input files: - An XML file that contains all information about a printed product (e.g., paper type, size, deadlines, invoice/bill info, contact details). - A Pitstop preflight report file that details the technical results of the PDF preflight check. Your task is to: - Read and understand the relevant data from both files. - Generate an HTML email body only (no subject, no headers). Instruction for the HTML content : - Translate it in [Metadata.Text:Dataset="Submit",Model="XML",Path="/field-list/field[tag='Language']/value"] - Add at the top a greeting to the customer (refer to the XML file for contact) - Follow with a reminder of the order name and a summary block (in a table format) showing key production details from the XML. - Summarize the preflight report using clear, non-technical language intended for someone not used to printer related terminlogy. - Errors are critical and mean the file is not suitable for print — highlight these in red. - Warnings are advisory and up to the customer to accept — highlight these in orange. - If there are no errors or warnings, briefly confirm the file is ready for print. Display the preflight results in a table format, listing: - Type (Error or Warning) - Description ( - Page number (if available) - Include helpful suggestions for resolving issue - Add a button with the review link that should lead the customer to this web page : https://www.enfocus.com/en/review - Below the button, add a short message telling the customer to click the button to make an approval decision. Formatting : - Output the body of the HTML only, as a single line (no line breaks, no \n or \r). - Do not escape characters. - Use single quotes (') instead of double quotes ("). - Do not include any plain text explanation or mardown element — only the final body HTML output. mistral-large-2411 0 store_name=The name of the store or merchant transaction_date=Date and time of the purchase total_amount:number=Total amount paid including tax tax_amount?:number=Tax amount applied (if shown) payment_method=Method of payment (e.g., Visa, cash) address?:string=Store address if available Yes No EML No json No TrafficLight 0 174 2 Gray Data with log AIconnect No Yes Yes Yes TrafficLight -90 174 148 Gray Log Log No Yes Yes Yes Filter 0 156 174 Gray No All Files No Files Filter 0 163 174 Gray No All Files No Files